GNU Radio Manual and C++ API Reference  v3.9.2.0-89-gb7c7001e
The Free & Open Software Radio Ecosystem
pfb_clock_sync_fff.h
Go to the documentation of this file.
1 /* -*- c++ -*- */
2 /*
3  * Copyright 2009,2010,2012 Free Software Foundation, Inc.
4  *
5  * This file is part of GNU Radio
6  *
7  * SPDX-License-Identifier: GPL-3.0-or-later
8  *
9  */
10 
11 #ifndef INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
12 #define INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
13 
14 #include <gnuradio/block.h>
15 #include <gnuradio/digital/api.h>
17 
18 namespace gr {
19 namespace digital {
20 
21 /*!
22  * \brief Timing synchronizer using polyphase filterbanks
23  * \ingroup synchronizers_blk
24  * \ingroup deprecated_blk
25  *
26  * \details
27  * This block performs timing synchronization for PAM signals by
28  * minimizing the derivative of the filtered signal, which in turn
29  * maximizes the SNR and minimizes ISI.
30  *
31  * This approach works by setting up two filterbanks; one
32  * filterbank contains the signal's pulse shaping matched filter
33  * (such as a root raised cosine filter), where each branch of the
34  * filterbank contains a different phase of the filter. The
35  * second filterbank contains the derivatives of the filters in
36  * the first filterbank. Thinking of this in the time domain, the
37  * first filterbank contains filters that have a sinc shape to
38  * them. We want to align the output signal to be sampled at
39  * exactly the peak of the sinc shape. The derivative of the sinc
40  * contains a zero at the maximum point of the sinc (sinc(0) = 1,
41  * sinc(0)' = 0). Furthermore, the region around the zero point
42  * is relatively linear. We make use of this fact to generate the
43  * error signal.
44  *
45  * If the signal out of the derivative filters is d_i[n] for the
46  * ith filter, and the output of the matched filter is x_i[n], we
47  * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} +
48  * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error
49  * in the real and imaginary parts. There are two reasons we
50  * multiply by the signal itself. First, if the symbol could be
51  * positive or negative going, but we want the error term to
52  * always tell us to go in the same direction depending on which
53  * side of the zero point we are on. The sign of x_i[n] adjusts
54  * the error term to do this. Second, the magnitude of x_i[n]
55  * scales the error term depending on the symbol's amplitude, so
56  * larger signals give us a stronger error term because we have
57  * more confidence in that symbol's value. Using the magnitude of
58  * x_i[n] instead of just the sign is especially good for signals
59  * with low SNR.
60  *
61  * The error signal, e[n], gives us a value proportional to how
62  * far away from the zero point we are in the derivative
63  * signal. We want to drive this value to zero, so we set up a
64  * second order loop. We have two variables for this loop; d_k is
65  * the filter number in the filterbank we are on and d_rate is the
66  * rate which we travel through the filters in the steady
67  * state. That is, due to the natural clock differences between
68  * the transmitter and receiver, d_rate represents that difference
69  * and would traverse the filter phase paths to keep the receiver
70  * locked. Thinking of this as a second-order PLL, the d_rate is
71  * the frequency and d_k is the phase. So we update d_rate and d_k
72  * using the standard loop equations based on two error signals,
73  * d_alpha and d_beta. We have these two values set based on each
74  * other for a critically damped system, so in the block
75  * constructor, we just ask for "gain," which is d_alpha while
76  * d_beta is equal to (gain^2)/4.
77  *
78  * The block's parameters are:
79  *
80  * \li \p sps: The clock sync block needs to know the number of
81  * samples per symbol, because it defaults to return a single
82  * point representing the symbol. The sps can be any positive real
83  * number and does not need to be an integer.
84  *
85  * \li \p loop_bw: The loop bandwidth is used to set the gain of
86  * the inner control loop (see:
87  * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html).
88  * This should be set small (a value of around 2pi/100 is
89  * suggested in that blog post as the step size for the number of
90  * radians around the unit circle to move relative to the error).
91  *
92  * \li \p taps: One of the most important parameters for this
93  * block is the taps of the filter. One of the benefits of this
94  * algorithm is that you can put the matched filter in here as the
95  * taps, so you get both the matched filter and sample timing
96  * correction in one go. So create your normal matched filter. For
97  * a typical digital modulation, this is a root raised cosine
98  * filter. The number of taps of this filter is based on how long
99  * you expect the channel to be; that is, how many symbols do you
100  * want to combine to get the current symbols energy back (there's
101  * probably a better way of stating that). It's usually 5 to 10 or
102  * so. That gives you your filter, but now we need to think about
103  * it as a filter with different phase profiles in each filter. So
104  * take this number of taps and multiply it by the number of
105  * filters. This is the number you would use to create your
106  * prototype filter. When you use this in the PFB filerbank, it
107  * segments these taps into the filterbanks in such a way that
108  * each bank now represents the filter at different phases,
109  * equally spaced at 2pi/N, where N is the number of filters.
110  *
111  * \li \p filter_size (default=32): The number of filters can also
112  * be set and defaults to 32. With 32 filters, you get a good
113  * enough resolution in the phase to produce very small, almost
114  * unnoticeable, ISI. Going to 64 filters can reduce this more,
115  * but after that there is very little gained for the extra
116  * complexity.
117  *
118  * \li \p init_phase (default=0): The initial phase is another
119  * settable parameter and refers to the filter path the algorithm
120  * initially looks at (i.e., d_k starts at init_phase). This value
121  * defaults to zero, but it might be useful to start at a
122  * different phase offset, such as the mid-point of the filters.
123  *
124  * \li \p max_rate_deviation (default=1.5): The next parameter is
125  * the max_rate_devitation, which defaults to 1.5. This is how far
126  * we allow d_rate to swing, positive or negative, from
127  * 0. Constraining the rate can help keep the algorithm from
128  * walking too far away to lock during times when there is no
129  * signal.
130  *
131  * \li \p osps (default=1): The osps is the number of output
132  * samples per symbol. By default, the algorithm produces 1 sample
133  * per symbol, sampled at the exact sample value. This osps value
134  * was added to better work with equalizers, which do a better job
135  * of modeling the channel if they have 2 samps/sym.
136  *
137  * Reference:
138  * f. j. harris and M. Rice, "Multirate Digital Filters for Symbol
139  * Timing Synchronization in Software Defined Radios", IEEE
140  * Selected Areas in Communications, Vol. 19, No. 12, Dec., 2001.
141  *
142  * http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.1757
143  */
144 class DIGITAL_API pfb_clock_sync_fff : virtual public block
145 {
146 public:
147  // gr::digital::pfb_clock_sync_fff::sptr
148  typedef std::shared_ptr<pfb_clock_sync_fff> sptr;
149 
150  /*!
151  * Build the polyphase filterbank timing synchronizer.
152  * \param sps (double) The number of samples per second in the incoming signal
153  * \param gain (float) The alpha gain of the control loop; beta = (gain^2)/4 by
154  * default. \param taps (vector<int>) The filter taps. \param filter_size (uint) The
155  * number of filters in the filterbank (default = 32). \param init_phase (float) The
156  * initial phase to look at, or which filter to start with (default = 0). \param
157  * max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5). \param
158  * osps (int) The number of output samples per symbol (default=1).
159  *
160  */
161  static sptr make(double sps,
162  float gain,
163  const std::vector<float>& taps,
164  unsigned int filter_size = 32,
165  float init_phase = 0,
166  float max_rate_deviation = 1.5,
167  int osps = 1);
168 
169  /*! \brief update the system gains from omega and eta
170  *
171  * This function updates the system gains based on the loop
172  * bandwidth and damping factor of the system.
173  * These two factors can be set separately through their own
174  * set functions.
175  */
176  virtual void update_gains() = 0;
177 
178  /*!
179  * Resets the filterbank's filter taps with the new prototype filter.
180  */
181  virtual void update_taps(const std::vector<float>& taps) = 0;
182 
183  /*!
184  * Returns all of the taps of the matched filter
185  */
186  virtual std::vector<std::vector<float>> taps() const = 0;
187 
188  /*!
189  * Returns all of the taps of the derivative filter
190  */
191  virtual std::vector<std::vector<float>> diff_taps() const = 0;
192 
193  /*!
194  * Returns the taps of the matched filter for a particular channel
195  */
196  virtual std::vector<float> channel_taps(int channel) const = 0;
197 
198  /*!
199  * Returns the taps in the derivative filter for a particular channel
200  */
201  virtual std::vector<float> diff_channel_taps(int channel) const = 0;
202 
203  /*!
204  * Return the taps as a formatted string for printing
205  */
206  virtual std::string taps_as_string() const = 0;
207 
208  /*!
209  * Return the derivative filter taps as a formatted string for printing
210  */
211  virtual std::string diff_taps_as_string() const = 0;
212 
213 
214  /*******************************************************************
215  SET FUNCTIONS
216  *******************************************************************/
217 
218 
219  /*!
220  * \brief Set the loop bandwidth
221  *
222  * Set the loop filter's bandwidth to \p bw. This should be
223  * between 2*pi/200 and 2*pi/100 (in rads/samp). It must also be
224  * a positive number.
225  *
226  * When a new damping factor is set, the gains, alpha and beta,
227  * of the loop are recalculated by a call to update_gains().
228  *
229  * \param bw (float) new bandwidth
230  */
231  virtual void set_loop_bandwidth(float bw) = 0;
232 
233  /*!
234  * \brief Set the loop damping factor
235  *
236  * Set the loop filter's damping factor to \p df. The damping
237  * factor should be sqrt(2)/2.0 for critically damped systems.
238  * Set it to anything else only if you know what you are
239  * doing. It must be a number between 0 and 1.
240  *
241  * When a new damping factor is set, the gains, alpha and beta,
242  * of the loop are recalculated by a call to update_gains().
243  *
244  * \param df (float) new damping factor
245  */
246  virtual void set_damping_factor(float df) = 0;
247 
248  /*!
249  * \brief Set the loop gain alpha
250  *
251  * Set's the loop filter's alpha gain parameter.
252  *
253  * This value should really only be set by adjusting the loop
254  * bandwidth and damping factor.
255  *
256  * \param alpha (float) new alpha gain
257  */
258  virtual void set_alpha(float alpha) = 0;
259 
260  /*!
261  * \brief Set the loop gain beta
262  *
263  * Set's the loop filter's beta gain parameter.
264  *
265  * This value should really only be set by adjusting the loop
266  * bandwidth and damping factor.
267  *
268  * \param beta (float) new beta gain
269  */
270  virtual void set_beta(float beta) = 0;
271 
272  /*!
273  * Set the maximum deviation from 0 d_rate can have
274  */
275  virtual void set_max_rate_deviation(float m) = 0;
276 
277  /*******************************************************************
278  GET FUNCTIONS
279  *******************************************************************/
280 
281  /*!
282  * \brief Returns the loop bandwidth
283  */
284  virtual float loop_bandwidth() const = 0;
285 
286  /*!
287  * \brief Returns the loop damping factor
288  */
289  virtual float damping_factor() const = 0;
290 
291  /*!
292  * \brief Returns the loop gain alpha
293  */
294  virtual float alpha() const = 0;
295 
296  /*!
297  * \brief Returns the loop gain beta
298  */
299  virtual float beta() const = 0;
300 
301  /*!
302  * \brief Returns the current clock rate
303  */
304  virtual float clock_rate() const = 0;
305 };
306 
307 } /* namespace digital */
308 } /* namespace gr */
309 
310 #endif /* INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H */
The abstract base class for all 'terminal' processing blocks.
Definition: gnuradio-runtime/include/gnuradio/block.h:60
Timing synchronizer using polyphase filterbanks.
Definition: pfb_clock_sync_fff.h:145
virtual std::string taps_as_string() const =0
virtual void set_beta(float beta)=0
Set the loop gain beta.
virtual void set_max_rate_deviation(float m)=0
virtual std::vector< float > channel_taps(int channel) const =0
virtual void set_damping_factor(float df)=0
Set the loop damping factor.
virtual void update_taps(const std::vector< float > &taps)=0
virtual void set_loop_bandwidth(float bw)=0
Set the loop bandwidth.
virtual std::vector< std::vector< float > > diff_taps() const =0
std::shared_ptr< pfb_clock_sync_fff > sptr
Definition: pfb_clock_sync_fff.h:148
virtual void set_alpha(float alpha)=0
Set the loop gain alpha.
virtual std::string diff_taps_as_string() const =0
virtual float loop_bandwidth() const =0
Returns the loop bandwidth.
static sptr make(double sps, float gain, const std::vector< float > &taps, unsigned int filter_size=32, float init_phase=0, float max_rate_deviation=1.5, int osps=1)
virtual float beta() const =0
Returns the loop gain beta.
virtual float clock_rate() const =0
Returns the current clock rate.
virtual std::vector< std::vector< float > > taps() const =0
virtual std::vector< float > diff_channel_taps(int channel) const =0
virtual float alpha() const =0
Returns the loop gain alpha.
virtual void update_gains()=0
update the system gains from omega and eta
virtual float damping_factor() const =0
Returns the loop damping factor.
#define DIGITAL_API
Definition: gr-digital/include/gnuradio/digital/api.h:18
static constexpr float taps[NSTEPS+1][NTAPS]
Definition: interpolator_taps.h:9
GNU Radio logging wrapper for log4cpp library (C++ port of log4j)
Definition: basic_block.h:29